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The wave functions for valence or conduction electrons are given in the form proposed by Phillips and 
Kleinman. The wave equation for the smooth part of the electron wave functions is rewritten as an integral 
equation which is solved by using the ^-matrix formalism. The smooth part of the wave function is then 
given by a plane wave plus waves arising from electron scattering by the effective potential of the crystal 
which might contain point imperfections. Approximate expressions for the wave functions, density and 
energy of the valence electrons and the self-consistent crystal potential are given. Numerical results ob­
tained for the Fourier coefficients of the valence electron charge density in diamond exhibit covalent bonding 
and are in good agreement with experimental results. The presented treatment of valence or conduction 
electrons is expected to be particularly useful in determining the electronic structure and the formation and 
migration energies of point defects in valence crystals. 

I. INTRODUCTION 

RECENTLY, a great deal of progress has been made 
in the study of self-consistent valence or conduc­

tion electron distribution in metals and semiconductors.1 

Cohen and Phillips presented a simple method for de­
termining self-consistently the screening of an effective 
crystal potential due to valence or conduction electrons.2 

By using first-order perturbation theory and the con­
cept of dielectric screening these authors derived a 
simple expression for the self-consistent crystal poten­
tial. However, their simple method failed to describe 
covalent bonding in valence crystals. This failure arises 
essentially from the linearization of the valence electron 
response to the effective crystal potential. Kleinman and 
Phillips determined for diamond a valence electron dis­
tribution in good agreement with experiment by using 
valence electron wave functions in the form of sym­
metrized combinations of plane waves orthogonalized 
to closed-shell core electron eigenfunctions.3 However, 
this approach to the valence electron wave functions is 
limited to symmetry points in reciprocal lattice space 
and, therefore, not very useful in determining self-
consistent electron wave functions and, particularly, in 
determining the electron redistribution due to crystal 
imperfections. 

These remarks upon previous work show that it is 
desirable to develop a simple method for a systematic 
determination of valence or conduction electron wave 
functions from a wave equation. Therefore, the aim of 
this paper is to determine systematically from a wave 
equation the Bloch wave functions in the form proposed 
by Phillips and Kleinman4—in a way which takes into 
account a nonlinear response of the electrons to the 
effective crystal potential and which can be readily 
applied to imperfect crystals. Assuming that the closed-

* Supported by the U. S. Atomic Energy Commission. 
*V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957); L. 

Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959); Phys. 
Rev. 117, 460 (1960); Phys. Rev. 118, 1153 (1960). 

2 M . H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961). 
3 L. Kleinman and J. C. Phillips, Phys. Rev. 125, 819 (1962). 
4 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959). 

shell core electrons are dynamically independent from 
the valence or conduction electrons and their eigen-
functions are known, then the Bloch wave functions of 
the valence or conduction electrons are essentially de­
termined by their smooth part which is called hereafter 
the effective wave function. The wave equation for the 
effective wave functions4 is rewritten as an integral 
equation which is then solved by using the ^-matrix 
formalism. The Hamiltonian of the wave equation for 
the effective wave function is split into Hf=Ho 
+J^iAH/, where Ho represents that part of Hf which 
has plane waves as eigenfunctions and AH/ is the 
perturbing Hamiltonian associated with the lattice ion L 
I is summed over all atomic nuclei of the lattice. Intro­
ducing then the operator h which describes the electron 
scattering by AH"/, the integral equation is solved in 
terms of h. The resulting effective wave function con­
sists of a plane wave plus waves involving i% which 
arise from single, double, and higher multiple electron 
scattering by the AH/. Assuming that the interatomic 
distances are large compared to the range of the AH/t 

where the main electron scattering occurs, then the 
multiple electron scattering can be approximated by 
multiple forward and backward scattering between the 
scatterers and can be expressed in closed form. 

The crystal might contain imperfections. Then, for 
example, a vacancy is described in Hf by AHvf=0, 
where AHy denotes the perturbing Hamiltonian associ­
ated in the perfect crystal with the lattice site V of the 
vacancy. An interstitial is represented in H' by a per­
turbing Hamiltonian AHi' located at an interstitial 
lattice site. Approximate expressions for the Bloch wave 
functions, charge density and energy of the valence 
electrons, and for the electronic contribution to the 
formation energy of point defects and the self-con­
sistent crystal potential are derived. 

In Sec. II the wave equation for the effective wave 
functions is rewritten as an integral equation. In Sec. 
I l l the integral equation is solved by using the ^-matrix 
formalism. An approximate expression for the effective 
wave function is given. In Sees. IV, V, and VI, approxi­
mate expressions for the t matrix, the self-consistent 
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crystal potential, and, respectively, the energy of the 
valence electrons are derived. In Sec. VII the general 
method is applied to diamond. The Fourier coefficients 
Pin, P220, P3ii, P222, and P400 of the valence electron 
charge density are calculated. The obtained results are 
compared with experimental data and previous theo­
retical calculations. 

The treatment of valence or conduction electrons 
proposed in this paper is discussed with respect to its 
limitations and applications in Sec. VIII. 

II. INTEGRAL EQUATION FOR THE EFFECTIVE 
WAVE FUNCTION 

The Bloch wave functions for valence or conduction 
electrons are determined by 

HM*) = E(k)Mr), (II.l) 

where the Hamiltonian H is given by 

H^-(hy2m)V2+Vi(t)+Aiv(t,E(k)) 
+C(r)+il„(r ,E(k)) . (II.2) 

Vi is the Coulomb potential of the lattice ions, e.g., 
atomic nuclei plus tightly bound core electrons. A& 
describes the exchange and correlation interaction be­
tween the tightly bound core electrons and the valence 
or conduction electrons. C is the Coulomb potential of 
the valence or conduction electrons. The operator Avv 

describes the exchange and residual correlation inter­
action among the valence electrons.5 

Phillips and Kleinman4 made for the Bloch wave 
functions \pk the ansatz 

*k(r) = Ck{$k(r)-E,,*' M k W ' ( r ) } , (H.3) 

where the normalization constant Ck is given by 

#k, the smooth part of the Bloch wave function, is 
called the effective wave function for the valence elec­
trons. The <pt,k are closed-shell crystal core electron 
eigenfunctions, t is summed over all closed-shell core 
electron states. The <pt,k are determined by 

j r^ i k ( r )=E*(k)^ f k ( r ) . (II.5) 

In the tight-binding approximation (LCAO) the eigen-
functions <pt,k are given by 

/ i y / 2 
*#.*(*)=(-) E-tfM(nW(r-r*), (n.6) 

where I is summed over all atomic nuclei of the lattice. 
The ti give the positions of the N atomic nuclei of the 
lattice. The functions cpt

l are atomic-like eigenfunctions 
associated with the Ith atomic nucleus. The expansion 
coefficients Ut,k(ri) are determined, in general, as 
shown in detail in Appendix C. In the case of a perfect 

6 J. C, Phillips, Phys. Rev. 123, 420 (1961). 

crystal the J7*,*(rj) are given by exp(ik«r?). The re­
quirement that \pk is orthogonal to the eigenfunctions 
<Pt,k and 

(^«,k|p«,k)=8«,< (IL7) 
lead to 

M k ) = <p*|k'|#k>. (IL8) 

In the tight-binding approximation the condition (II. 7) 
is fulfilled only if the overlapping of <pt

l and <p8
1' for 

which ly^V is neglected. Combining now Eqs. (II.l), 
(II.3), and (II.5) one derives for $ k the wave equation4 

ff'$k(r)=E(k)#k(r), (II.9) 

with the effective Hamiltonian 

H'ESH+VR. (11.10) 

The nonlocal potential F#(r,E(k)) is given by 

F*(r,£(k))#k(r) 
=E i , * ' ( £ (k ) -£ , (k , ) ) ^ (k )^ i k ' ( r ) . (11.11) 

It may be noted that the indeterminacy of <3>k which 
can be seen from Eq. (II.3) allows one to impose an addi­
tional constraint on $ k which can be used for simplifying 
VR. The additional constraint on # k is usually applied 
in the form of a variational principle. In accordance 
with the varied quantity various expressions are ob­
tained for VR.6~8 

Assuming that the tightly bound core electrons are 
dynamically independent from the system of valence 
or conduction electrons and the core states <pt,k are 
known, the determination of the Bloch wave functions 
\//k is reduced to the determination of #k by the wave 
Eq. (II.9). 

Equation (II.9) is now converted into an integral 
equation as follows. The Hamiltonian Hf is split into 

Hf=HQ
f+AH/. (11.12) 

22V, whose eigenfunctions are plane waves, is given by 

h2 

HQ
f^ V2+F/(k,k; E(k))+F i 2(k,k; JS(k))+C0 

2m 
+AJ(t,E0'(k)), (11.13) 

with 
F/(k,k; E(k))^0~1(k| F/(r,E(k)) | k>, (11.14) 

where V/(t,E(k)) is defined as 

F/( r ,E(k))s F*( r )+^( r ,£ (k ) ) , (11.15) 
and with 

VB(k,k; £(k))=0-i<k| F*(r,£(k))|k>. (11.16) 

Using Eq. (11.11) one gets 

F*(k,k;E(k)) 
=O- 1 Ee^(^(k)™^(k0)K^,k ' ]k) | 2 . (11.17) 

^ M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 
7 F. Bassani and V. Celli, Nuovo Cimento 11, 805 (1959). 
s W. A. Harrison, Phys. Rev. 126, 497 (1962). 
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ti denotes the volume of the crystal. If F/(r,£(k)) 
and VR(t,E(k)) are local potentials, thenF/(k,k; E(k)) 
and Fi2(k,k;E(k)), respectively, are the space aver­
ages of these potentials. The perturbing Hamiltonian 
AHf is given by 

AH'=AV/+AVR+AC+AAVV (11.18) 
with 

A7/( r ,£(k) )s F / ( r ,E(k) ) - F/(k,k; £(k)) , 

A7 j 8 ( r , £ (k ) ) s7 J l ( r l E(k) ) -^ (k ,k ;£ (k ) ) , 

AC(r)^C(r)-C0 , 
and 

A^ w ( r ,E(k) )^^ w ( r ,E(k) ) -^^( r ,E 0
, (k) ) . (11.19) 

Co and Avv° result from C and AVVy respectively, for 
AJET-0. 

The assumption that the tightly bound core electrons 
are dynamically decoupled from the system of valence 
electrons has the consequence that A%v is essentially 
unscreened. Therefore, in the following, A%v is approxi­
mated by Aiv{xfi). Then, F/(r,£(k)) and 7/(k,k;£(k)) 
are given by F/(r,0) and F/(k,k; 0), respectively. De­
fining a Green's function Go'(r,r',i£o'(k)) by 

{ffo,-£o,(k)}Go,(r,r,^o,(k)) = - S ( r - r ' ) (11.20) 

and the requirement that Go(t,t\Eo(k)) as a function 
of r has the same behavior for r—» 0 and r —»°o as the 
scattered wave arising from A#', Eq. (II.9) can be re­
written as the integral equation 

$k(r)=<I>k
0(r)+ fdVGo'faT'&>'($) 

X{A#'--A£}<i>k(r'). (11.21) 

The eigenfunctions $k° of Ho are given by 

$k
0(r) = exp(;k-r). (11.22) 

AE is defined by 
AE=E-Eo', (11.23) 

with 
Eo' (k)=fl-1^01 Ho' | $k°>. (11.24) 

A$k(r)= ^VGo /(r,r',Eo ,(k)){AiI ,-A£}$k(r ,) (11.25) 

is the scattered wave resulting from the scattering of 
the free electron in state $k° by AH'. Denoting by gk 

the integral operator with kernel Go'(r,r',Eo'(k)), Eq. 
(11.21) can be rewritten as 

$ k = |k )+# k (A# ' -A£)$ k , (11.26) 

where the state vector | k) represents <£k°. 

III. THE SOLUTION OF THE INTEGRAL 
EQUATION 

The integral Eq. (11.26) can be formally solved by 

*k=[ l -g k (Ai? , ~AE)]- 1 | k ) . (III.l) 
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The scattered wave A$k is then given by 

A$ k =^ k (AH , -AE) [ l -g k (A^-AE)] - 1 | k ) . (III.2) 

As shown in detail in Appendix A, AH' can be split into 

Aff'(r,E(k)) = E i AH/it-n, £(k)) , (III.3) 

where I is summed over all atomic nuclei of the lattice. 
The perturbing Hamiltonian AH/ is associated with 
the atomic nucleus / located at Xi in the lattice. In ac­
cordance with Eq. (III.3), one gets 

A £ = E I A £ I . (IIL4) 

Equation (III.2) can now be rewritten as 

ASk-EiASk1 , (III.5) 
with 

AQ^g^AHt'-AEt) 
X [ l - I > gkCAffZ-AEfOJ-Mk). (HI.6) 

A$k
z is the scattered wave arising from AH/. Expand­

ing the expression [1—J2v gk(AHi>'—AEi^Jr1 in a 
series, introducing the operator 

*,= (AHZ-AEi^l-g^AH/- AEZ)]"S (HI.7) 

which describes the electron scattering by AH/, and 
using the operator identities [1—gk(AH/—AEi)!^1 

= l+gk*z and 

(AH/-AEl)tl-gk(AH/-AEl)J-i 
= [ 1 - {AH/-AEl)g^{AH/-AEi), 

the scattered wave A<I>k* is expanded as 

A$k
l=(gkti+ 2 g*tig*h' 

+ Z gk/*k/rM-+---) |k>, (ni.8) 
v, i" (/vuvn 

where always successive indices are different. The 
various terms in Eq. (III.8) are interpreted as arising 
from single, double, and higher multiple electron scat­
tering. For example, gk/z|k) represents the scattered 
wave due to scattering of an electron in state | k) by 
AH/ and the scattered wave Y*vgkhgkh'\k) results 
from the subsequent scattering of the various scattered 
waves gkh | k) by AH/. 

The main contributions to A<£>k* will arise from single 
electron scattering by AH/ and from multiple scatter­
ing involving beside AH/ such perturbing Hamiltonians 
AHV' which are associated with atomic nuclei V in the 
next neighborhood of the atomic nucleus /. Therefore, 
A$k

z is approximately given by 

A*k'=gkti|k)+ £ A $ k ^ + • • • , (III.9) 
v 

with 

A$k
ll'= (gkhgkh+gdigJi'gkti 

+gktigkhgktigkti>+-- -)|k>. (111.10) 
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The physical significance of this term is illuminated by and 
the graphical representation given in Fig. 1. If neces- ** nri"(ir) 
sary, all higher-order terms in Eq. (III.9) can readily 
be written down in explicit form using their graphical a r e pictorially given in Fig 1 
representation For example the two next higher-order F o r & f u r t h e r e v a l u a t i o n o f E ( I I L 8 ) t h e G r e e n , g 

terms in Eq. (III.9) denoted by f u n c t i o n G o ' ( r / ) £ ( / ( k ) ) n e e d b e determined. Fourier 
A$i" ' z"(k) transforming Eq. (11.20) one obtains 

with 
ft2 

Im r d*q 
Go'(r,r',E0'(k))= - — / - ^ ' [ ^ ' ( k ) ] exppq- ( r - r ' ) ] , (IIL11) 

n2 J (27r)3 

fp / f t 2 x - 1 

GV[q,ZV(k)]= ( £0'(k) q2-F/(k,k; 0 ) -7*(k ,k ; £(k) ) -CW™°(q,q ; EJQL))+U ) , 
2tn\ 2m / 

(111.12) e>0. 

The limit €—»0 is taken after the q integration is per- p>JtF and e < 0 for p<kF, kp being the Fermi wave 
formed. The irreducible self-energy Avv°(q,q;ZV(k)) is number, and where V8°(r—r', Eo'(k) —p0) denotes the 
given by screened electron-electron interaction in a uniform 

electron gas, one derives 
^•(MjEo'CkJJsO-KqM^Mo'WIq). (IIL13) 

4 w
0 (q ,q ; J3 0 (k)) 

Approximating Aw°(r9Eo'(Jk)) by9
 dzp dpQ 

XGo"(v,Po). (IH.15) 
f f dpo 

= i U V — V.°(r-f/, £0'(k)-/>o) It follows from Eqs. (11.24) and (11.13) that £0'(k) 
J J *v . is given by 

X G 0 " ( r , r » exp(«q'-r'), (111.14) £0 '(k) = (*»/2«)A»+7/(k,k; 0)+FB(k,k; £(k)) 

, +, „ . ; , , , „ , A W * i , r > +Co+^M°(k )k;£0
,(k)). (111.16) 

where the Fourier transform Go (j>ipo) of the Green's 
function Go" is given by Eq. (HI. 12) with e>0 for Thus, Eq. (111.12) can be rewritten as 

(W/lm) 
G0 ' (q,£o'(k))= . (HL17) 

(^/2w)($
2-P)+^„»(q,q; E0'(k))-AJ(k,k;Eo'(k))-it 

' L. P. Kadanofi and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc., New York, 1962). 
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Performing the angular integrations in Eq. (III. 11), one gets 

2m 1 
Go'(r)r';£0 '(k))=-

4**hH\t-i'\ 
I J dqqGv'(q,E0'(k))exp(iq\t-i'\) 

+f ^?exp(^|r-r ' |)CGo ,(-?,Eo ,(k))-Go /(?,Eo /(k))][^ (111.18) 

where it has been assumed that Avv°(qkyq; Eo(k)) is not is given by the residuum associated with the pole at 
angular-dependent with respect to q. <?=&, one gets 
Then, neglecting the second integral and evaluating the f 

first integral by using the Cauchy theorem, one obtains ^° (r>r > ^° W ' 

r ' < W . * " n r Y > - ^W = i t . i (* , | r - r / | ) - , (111.22) 
2TT^2 r - r ' (III. 19) . , l t h l r r I 

with 
XLRes.(?exp(^|r-r' |)Go'(?,£o'(k)))a,9,.. < L l (A, | r - r ' | ) S 2Res .«*-»>l - ' ' IGo / ( ? , £o ' (* ) )}^ . 

(111.23) 
y is summed over all poles of Go (q,Eo (k)). The qj are 
determined by #-i takes into account effects due to the interaction of the 

(Go'fe-Eo/(k)))~1=0. (111.20) electron, described by the propagator G0'(r,r';Eo(k)), 
. . with the other electrons of the system. 

It follows from Eq. (III. 17) that in first-order approxi- Using the relations 
mation, G0'(r,r'; ZZo'(k)) is given by 

G o - ( r / ; E o - W ) c - - e X P ( ^ | r " r / | )
? (111.21) /*M*><*I = ( W ( r - 0 (m.24) 

4TT^2 | r - r ' | , J 

and 
which is the free-particle Green's function. The cor­
rections to this approximation arise from many- body (r\g^)=-(2m/¥)(2ry 
effects. Approximating JS0'(k) by Ea'(k), and assuming XG^'(K,E9'{k))S(y-'X), (111.25) 
that the major contribution to the sum in Eq. (III. 19) one gets 

gkh\ k> = — f d*q exp(«q. r)G0'(g,£o' (*))/i(q,k; £(k)) (HI.26) 
2irV 

and 

A$k"'= ftPq exp(iq.r){ (l/2x2)2 f d3yG0'(q,E,'(k)Ml,r; £(k))G0'(%£o'(*))**< (Y,k; -E(k)) 

+ (l/2x2)3 / / JV8XGo'(9,£o'W)^(q,Y; £(k) )G 0 ' (7 , i2o 'WMYA; £(k))Go'(X,£,'(*))*,(^k; E(k)) 

+ • • • } . (111.27) 

The / matrices /((fl,k; £(k)) are denned as evaluated from their graphical representation using the 

/ , < , , k ; * < k ) ) - - < 2 < 4 ^ < q W k > : (111.28) ^ ^ S r ^ S o n of the expression for the 
h is the t matrix describing the electron scattering by scattered wave A$k"'(*)> integrals of the type 
AHi centered at r=r j . h is related to ti° which is the j / f / f f u 
/ matrix for scattering by AH/ when centered at r=0 by 

*,(q,k; £(k)) = exp[i(k-q)T,J,o(q,k; £(k)) . (111.29) a fd*W(<r,X; E ( k ) V ( * , Y ; £(k)) 

The terms A<V<"(k) and A$2"'<"(k) are similarly XG0'(X,E0'(AO) exp(ia,T„0 (111.30) 



A1050 K. H. B E N N E M A N N 

need be evaluated. Assuming that the angular depend­
ence of the integrand with respect to X is essentially 
determined by exp(iX-rn>)> the angular integrations in 
Eq. (111.30) are performed by putting X in the / mat­
rices equal to Xxw/rw. The result is 

4T r°° / tiv \ 
/(r«,,<r,Y,k) = — / d\\h\ «r,X—; E(k) ) 

ruJo \ fiv ' 

\ fiv ' 

XGV(X,E0'(*))sinXr,p. (IIL31) 

Again, assuming that sinXrw varies more rapidly as a 
function of X than the / matrices, the t matrices can be 
taken out of the integral and evaluated at X equal to k. 

Then, the remaining integral can be easily performed. 
Using the same approximation as in deriving Eq. 
(111.22) one gets 

V fiv ' 

/ tu> \exp(iftr«/) 
of*—,Y ;£(k)) . (111.32) Xhl 

Then, making use of t{*(X9y; JS(k)) = tf ( - y9 -3l;E(k)), 
all multiple scattering terms in Eq. (111.27) can be 
summed up and one obtains: 

A^ 'CRO^expCA-nMk^KR^i i i^k) , (111.33) 

with 

Ak»' 
a^i(kyrw)[exp(ikrw)/rir2 

X{a-i(ViiOCexp(iftf«OAK']/i0(-*ii«', k; E(k))h«(knu,, -knlv; £(k)) 

+exp(4.rr,)/i*°(*nir,k; £(k))}, (111.34) 

where 

and 

F,(R,, 

where 

nw=*Xw/rw, Xw — Xi—Xv, (111.35) 

n„,,k)s — fffiq exp(^q. R,)G0 'Mo'(*)) 

XtHqMiv',£$)), (111.36) 

R ^ r - r z . (111.37) 

It may be noted that if all the perturbing Hamiltonians 
AHi> are equal, as in the case of a monoatomic perfect 
crystal, then all ^°(p,q;£(k)) in Eq. (111.34) can be 
replaced by /?°(p,q; E(k)). The scattered wave A#k* 
can now be rewritten in the form 

A#k
? = exp(ik.rO{^(R^(k/*),k) 

+ E ( ^ k ^ + ' - ' ^ C R ^ ^ k ) } . (111.38) 
v 

Using the same argument as in evaluating I, Eq. 
(111.30), for large R% tffakxiw; E(k)) can be taken out 
of the integral in Eq. (111.36) and be evaluated at 
q=kRi/Ri. One gets then 

/ Ri v 
aa-t&RiMk—, k;£(k)) 

\ Ri / Ri 
In the case of a perfect crystal the scattered wave 

Rj_ \exp(i&i?j) 
(111.39) 

A$k can be expanded in a Fourier series as 

A$k= E aK(k) expp(k+K) • r ] , (111.40) 

where K is a reciprocal lattice vector. Using Eqs. 
(III.5) and (111.38) one gets 

SK 
„K(k) = —{TK(k)+ £ (A^'+---)TK(knhl,)}, 

tto v 
»'"'•> (m.4i) 

with 
TK(p)= / " ^ ^ e x p [ - i ( k + K ) . R i j F , ( R ^ ( p / # ) , p ) , 

(p=Mm.,0. (in-42) 
fio denotes the volume of a unit lattice cell and h de­
notes any one of the lattice ions. 5k is called the struc­
ture factor and is given by 

SK=ZJ exp(-iK.dy), (IIL43) 

where the d3 are the position vectors of the lattice ions 
j within the unit lattice cell, j is summed over all ions 
within the unit lattice cell. Using Eq. (111.36), Eq. 
(111.42) can be rewritten as 

TK(p)=4wG0
f(\k+K\,EQ

f(p)) 
X/*0°(k+K,p;E(k)). (IIL44) 

In order to get self-consistent wave functions ^k, the 
t matrices ^°(q,k;£(k)) need be determined self-
consistently. This requires a self-consistent determina­
tion of AH/. In the next two sections we discuss the 
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IV. SELF-CONSISTENT DETERMINATION OF THE 
T MATRIX *j°(q,k;£(k)) 

self-consistent determination of the scattering ampli- The matrix element (A#V(q,k; J3(k))° is defined as 
tude /*°(q,k; -E(k)) and the crystal potential AH/. ~ 

(Atf/(q,k; £(k)))»s / ffiR% exp(-*q-R,) 

XAff ,'(R,,E(k)) exp(&.Rj). (IV.4) 
It is useful for determining self-consistently the AHi(q,k; JE(k)) is defined as 

£ matrices //> to derive an integral equation for AH/(a k 'E(k)) = expR(k— q) • rH 
/°(q,k;£(k)). Because of ' ' X(AH/(q}k;E(k))y. (IV.S) 

/z|k)=(A£rz
,-AEz)|k)+(Afi r/-AEOgk(A^/-AEz) The integral Eq. (IV.3) can be solved by iteration. 

X(l—gk(AHi>—AE?))
_1|k), (IV.l) Since (AH/)0 involves/*0, the self-consistent determina­

tion of h° is performed as indicated by 

(AH/)0<=±hO. (IV.6) 

To obtain a self-consistent expression for 

A£T«'(q,k; E(k))^(AV/(q,k; 0)'+AF*<(q,k; E(k)) 
+ACl(q,k)+AAvv

l(q,k;E(k)), (IV.7) 

one gets 
2m 

tf(q,k;£(k))= <q|Aff,'-AE,|k> 

2m 

4TT# 
<q|(AH|,-A£i)gk/i|k>. (IV.2) 

the matrix elements AC* and Ai4w* need be determined 
self-consistently. The potential ACi arises from the 

Neglecting A£z and evaluating the second term in Eq. polarization of the valence electron Fermi sea induced 
(IV.2) by using the relations (111.24), (111.25), and by AHi which results from AH/ for A 7 ^ = 0 . This 
(111.28) one gets for tf the integral equation amounts to an effective, e.g., screened one-body 

tf (q,k; E(k)) = - (2m/^)(AH/(q,k;E(k))<> P ° t e n t i a l
 ( A W s (AV/Y+ACt. (IV.8) 

^m f „ , ^ ,, „,lx^„ (AVi1)/ and AAvv
l are determined in detail in the next 

Ij ^(Aff, ' («,P; £ ( k ) )° section. 
If AHi'(Ri,E(k)) is a smooth potential, then Eq. 

(2T)WJ 

XG0'(p,E0'(*))tf(p,k; £(k)) . (IV.3) (IV.3) is solved by 

tf(q,k;E(k))=-
2ra (Aff«'(q,k;£(k)))o 

4TT/Z2 2 W /• 

1 + - — — / ^G 0 ' (^£o ,(*))(A^(q,p;E(k)))o 
( 2 T T ) % V 

(IV.9) 

V. SELF-CONSISTENT DETERMINATION 
OF AJr,'(q,a,;£(k)) 

Assuming that the eigenfunctions <pt,k are self-con­
sistent, then the self-consistent determination of AH/ 
is reduced to the self-consistent determination of AHi. 
To determine self-consistently AHi(qyX; E(k)), the de­
pendence of the potential ACz(r) and the operator 
AAvv

l(t,E(k)) on AHi(t,E(k)) need be evaluated ex­
plicitly. First, AC(r) is given by9 

AC(r): ~ild"; dpt 

2T 
Flr-r'l 

with 
X { G ( r ' , r » - G , ( r ' , r » } , (V.l) 

F ( | r - r ' | ) = e 2 / | r - r ' | . (V.2) 

The exact one-electron Green's function G(r,r',/>0) is 
denned by 

{H-po}G(r,r',p0) = --8(t-r') (V.3) 

and the same boundary conditions as imposed on the 

Green's function Go". The Green's function G0(r,r',£o) 
is denned by Eq. (V.3), replacing the Hamiltonian H by 
(#o'--Fi*(k,k;£(k))}. Converting Eq. (V.3) into an 
integral equation one gets 

G(r,r^0) = G0(r,r',£o) 

+ [dV'Go(r,T",po)AH(T",po) 

XG(rV,#o). (V.4) 

Equation (V.l) can then be rewritten as 

AC(r) = E,ACi(r), (V.5) 
with 

ACi(r)= - 2 i f f [dVdV'—V(\t--t'\) 

XGo(r',r , /^o)AF,(r"^0)G(r , ,,r'^o), (V.6) 

which is pictorially represented in Fig. 2. The wavy and 
striped line represent the electron-electron interaction 
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FIG. 2. Determination of ACj. 

and the interaction due to AHi, respectively. The upper 
and lower half-circle represent the Green's function Go 
and G, respectively. Expressing G in terms of the wave 
functions yf/p as 

r dH 
G(r,r',£0)=G / —;G(p,Po¥p(r )^ / ( r ' ) , (V.7) 

with 
G(p,po) = lE(p)-po-nlrl, (V.8) 

where e is defined as in G0", Fourier transforming the 
potential V and G0, then the matrix element ACi(q,X) 
is given by 

r r rdpo dH dH' 

J J J 2T (2ir)3 (2TT)8 

XGo(*>»G(p,/>o)<*p| p ' + X - q) 

X(p ' |AH ! | ^ ) , (V.9) 
with 

^ ( | q - ^ l ) = 4 « 2 / | q - i | 2 . (V.10) 

Approximating G by Go yields the random phase ap­
proximation.9 Assuming momentum conservation one 
obtains p=p /+^.—q. This result would follow auto­
matically from the evaluation of the matrix element 
(*AP I p'+^—q) i*1 the case of a uniform electron gas and 
in the case of a perfect crystal when momentum ex­
change between lattice and electrons is neglected.10 The 
integration over po in Eq. (V.9) yields the factor 
/P(l — /p+q-x), where /p and /p+q_x denote the Fermi 
distribution function. This implies that the matrix 
element (\f/v | p) can be taken out of the integral in Eq. 
(V.9) and can be replaced by (^p | p)av, which is aver­
aged over values of p within the Fermi sea.10 It follows 
then for ACi the approximate expression 

ACi(q,*)=-2«2F(|q-3i |) 

rdpo dzp 
X<*,|p> •ff- <Zo(|p+q-a.|,*«) 

2TT (2TT)3 

XG(iMM)<p+q-*|Aff,|*p>. (V.ll) 
10 F. Bassani, J. Robinson, B. Goodman, and J. R. Schrieffer, 

Phys. Rev. 127, 1969 (1962). 

Using formula (111.24), Eq. (V.ll) can be rewritten as 

ACKq,*)--2fflF( |q-3t |) 

r d*<x 
X ^ p | p ) a v / — — <0#,>.T 

J (2i?)» 

dp0 dzp 
* / / 

-Go( |p+q-*| ,*o) 
(2TT)3 (2TT)3 

XG(p,#o)Aff,(p+q-a.,iF;^o), (V.12) 

where (a|^p)av is averaged over all values of p within 
the Fermi sea. 

The sum of the potentials (A VJ)f and ACi yields an 
effective, e.g., screened, one-body potential denoted by 
(AVil)8'. The screening of the one-body potential (AVJY 
arises from the polarization of the valence electron 
Fermi sea induced by (ATV)' itself. As was shown by 
Ehrenreich and Cohen,11 this screened potential is, to 
first order in the external potential (AVil)\ equivalent 
to AEi obtained within the Hartree approximation. 

The dependence of Ai4„«l(q,a,; E(k)) on AHi is 
evaluated as follows. The operator AAvv(r,E(k)) is 
defined as 

AAvv(t,E(k)) exp(iX-r) 

= jdh'{L{t,x'; E(k))~S0(r,r',E0(k))} 

Xexp(a . r ' ) , (V.13) 

where 2 and 2J0 denote that part of the irreducible 
valence electron self-energy which is not taken into 
account in the Hartree approximation. 2 results from 
the Hamiltonian H and So from Ho which is obtained 
from Ho for Fij(k,k; E(k))=0. The self-energies are 
determined according to the diagram given in Fig. 3. 
The wavy line represents a screened electron-electron 
interaction and the straight double line represents the 
exact one-electron Green's function G. One gets9 

2(r,r ';E(k)) 

rdpo 
= */ — F,( r , r^ 0 )G(r , r ' ,£ (k)-^o) , (V.14) 

J 2TT 

where V8 denotes the screened electron-electron in­
teraction which is determined in detail later on in 
this section. 2)o(r,r'; E0(k)) is obtained from Eq. 
(V.14) replacing V8 by V8°, which refers to the case 

FIG. 3. Diagram for the 
self-energy 2. 

11 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). 
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of a uniform electron gas, and G(r, r', E(k)—p0) by 
Go( r , r ' , £ 0 (k ) -M Using then Eqs. (V.4) and (V.7), 
approximating the term V8GQ by V8°Go, Fourier trans­
forming V8 and Go, and using formula (111.24), one 
obtains 

AAvv
l(q^;E(k)) 

- / / / / 

dp0 d»p dlp' d3<r 
v.(v,p«) 

2w (2ir)3 (2a-)3 (2a-)8 

XGoOq-pI.EoW-^GCp'.^k)-^!^) 

X<Vy | X-p>Aff , ( q - P , »5 E(k)-pB). (V.15) 

Assuming momentum conservation, one gets q = ^ 
= P+P'- Then Eq . (V.1S) can approximately be re­
writ ten as 

AAm
l(q,X;E(k)) 

r a'a 
= ffi(27r)35(q-^)(^,_p| q - p ) a v / — - < * | * , _ „ > 

J (2ir)3 

dz<r 

X 
/ / 

# o d%p 

2* (2*-)3 

(2x)8 

^.(p,#o)Go(|q-p|,£o(*)-#«) 

XG(q-p, £(k)-^8)A£ri(q-p, a; E(k)-#„) , 

(V.16) 

where the matr ix elements are averaged over values of 
p within the Fermi sea. I n a further approximation the 
Green's function G(q— p, E(k) —po) can be approached 
byGQ(\q-p\,Eo(k)-po). 

The wave functions ^p in the matr ix elements involved 
in the formulas for ACi(q,X) and AAvv

l(q,3.; E(k)) can 
be approximated by the wave functions \[/v which result 
from approximating AHi by (AVi1)'. 

I t follows from Eqs . ( V . l l ) and (V.15) t h a t 
AHi(q^]E(k)) is self-consistently determined by 

AHl(qyX;E(k)) 

= (AV/(q,%;0)y+fff 
dp0 dzp dza 

2w (2TT)3 (2TT)3 

X{®(q,l>,po,V,<r)AHi(p+q-i, «\ po) 

+T(q, X, E(k)-p0, p, <r)Aff|(q-p,«r;E(k)-*0)> , 
(V.17) 

with 

e(q,\Pw)**-2iQV(\q-l\) 
X<^p| p)avGo( | P + q - ^ | , #n)G(P,fc)<«#»> (V.18) 

and 

T(q,X,E(k)-p0, p,cr) 
^iQ(27r)85(q-a) F.(p,/>0)Go( | q - p | , Eo(k)-p0) 
XG(q-p , £(k)-^)<<r |^_ p)<^_ p |q-p) . (V.19) 

FIG. 4. Screening 
of electron-electron 
interaction in ran­
dom-phase approxi­
mation. 

The local part of AHi, denoted as (AVi1)/, is then 
approximately given by 

(AJ7(q-*;0)). '= 
(AF7(q-a.;0))' 

K(q-X;0) 
(V.20) 

with 
r f r d3p d3<r dpa 

« ( q - 3 i ; 0 ) « l - / / / — -
j J J (2TT)3 (2TT)3 2TT (2TT)3 (2T)8 

X@(qA^o,P,<r). (V.21) 

«(q— X; 0) can approximately be rewritten as 

K ( q - ^ ; 0 ) = l+ iOF( |q -3 . | ) 

- " — < ^ P I P>av<ff | ̂ p ) a v P o ( q - ». 5 0 ) , 
(2x)8 

where PoCq—^; 0) is given by 

rdp0 d*p 

(V.22) 

Po(q -*°>-2Jf 2w (2TT)3 

XGo(|p+q-*|,#o)G(p,#0). (V.23) 

If the Green's function G is approximated by Go then 
Po is the polarization propagator in the random-phase 
approximation for a uniform electron gas. An explicit 
expression for this polarization propagator is given by 
Lindhard.12 

In the general case, where the potential AHi is not 
local, AHi(q,X; E(k)) can be determined approximately 
by substituting on the right-hand side in Eq. (V.17) 
for AHi the expression for (ATV)/. In the limit p —> 0, 
see Eq. (V.17), A#z is given by (AVi1)/. 

The screened interaction V8 among the valence elec­
trons is determined as indicated by the diagram in 
Fig. 4. In Fig. 4 the wavy light lines represent un­
screened electron-electron interaction and the wavy 
heavy lines represent screened electron-electron inter­
action. Using Eq. (V.7) and assuming momentum 
conservation one gets 

V.(q,qo) = V(q)/e(q,q0), (V.24) 

where the dielectric function e(q,qo) is given b y 

<d,qo)^l+iV(q)P(q,qo). (V.25) 
12 J. Lindhard, Kgl. Danske Videnskab, Selskab, Mat.-Fys. 

Medd. 28, 8 (1954). 
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The polarization propagator P(q,qo) is determined by then P(q,<?o) is given by 

f f dzp dp0 ^(q,go) = (^p |exp( - iq . r | ^ p + q )av 
P(<l,qo)^2j J - _ _ G ( p , £ 0 ) G ( p + q , pQ+qo) X^m|exp(fq.r|^p>.vPoo(Mo) , (V.28) 

where Poo is given by Eq. (V.23) putting G=GQ. 
(2T)» 

X(^P | exp(- iqT) |^ p + , ) 

X<*m |ezp(*q.r)|*,>. (V.26) VI. ELECTRON ENERGIES 

0 . ,, . x . L . , , • , _ , . The energy of a valence or conduction electron with 
Since the integration over p9 yields; the factor / , m o m e n t u m l i s g i v e n b y R e £ ( k ) w h e r e i t f o l l o w s f r o m 

X ( l - / P + q ) , one gets for P(q,p0) the approximate t h e w a v e Eq. (II.9) that £(k) is determined by 
expression i \ / \ ^ 
P(q,?o) = 2(^p|exp(-iqT)|^p + ,)a 

£(k) = <#k|F'|*k>/<*kl*k>. (VI.l) 

w , , ,. . . . . Then, using Eqs. (11.12), (III.3), (111.24), (IV.4), and 
X<* m | «p(«q . r ) |*P>.T (iv.5), one obtains 

X ffL%ihh)G{p+(l} pa+qo). (V.27) W =*'(k)+E.(AE<k>)., (VI.2) 
•̂  ^ 3 2?r where < k | # 0 ' | k)/<<I>k|<I>k) has been approximated by 

The matrix elements are averaged over values of p E f(k)=Qr1(k\H '\k) (VI 3) 
within the Fermi sea. Approximating the Green's ' 
functions G in Eq. (V.27) by the Green's functions Go, and where (AE(k))i is given by 

1 [Wk2 h2 r d*p 
(AE(k)) ,= — - ( < A $ k * | k ) + c . c . ) + — / £2<A<i>k<|p><p|A<i>k> 

<<S>k|<I>k}l2w 2mJ (2TT)3 

r dzp r 
+ / (A^ |pM w

0 (p ,k ;Eo , (k) )+(p |A^M^(k,P;^o , (k) ) 
7 (27r)3L 

/

<r<7 "1 r r d6p d6q } 

— { A ^ l v X q l A ^ A J i v M E o i K ) ) \+ / —-- -<^ |q><p |* k >AH, ' (q ,p ;£ (k) ) . (VI.4) 
(2TT)3 J J 7 (2TT)3 (2TT)3 J Due to A#/(q,p; E(k))} the energy E(k) is given by Eq. (VI.2) implicitly. Equation (VI.2) can be solved by 

iteration.13 In first-order approximation E(k) can be approximated in AH/ by E0'(k). Equation (VI.2) can be 
rewritten in the form 

E(k) = E0 '(k)+ £ (aK*(k)a^(k)r&—(k+K)VK'+il. .0(k+K, k+K' ;E 0 ' (k)) l 
<$k|$k>K,K'l L 2m J 

N } 
+~SK-K'(8K,o+a^(k))(8Kf,0+aKf(k)XAHl:(k+KJ k+K ' ; E(k)))° \+EF(k) , (VI.5) 

where s denotes the number of atoms per unit lattice cell and where EF(k)y denoting the change in energy of the 
perfect crystal due to crystal imperfections, is defined as 

&(k)s^(A£(k) )^-Ei (A£(k) ) ,co) . . (VI.6) 

(AE(k))j(0) refers to the perfect crystal, e.g., (AE(k))i in the case of a perfect crystal. V and / are summed over all 
atomic nuclei in the imperfect and perfect crystal, respectively. For example, in the case of a vacancy at a lattice 
site 1= V it is (AE(k))Z/=F=0. However, the vacancy at the lattice site 1= V is created by bringing the lattice atom 
which occupies in the perfect crystal this lattice site I to the surface and, of course, the term (A£(k))^ associated 
with the surface atom appears in the sum over lf. An interstitial is created by bringing a surface atom into an 
interstitial position in the interior of the crystal. Thus, the term (AE(k))z(0) associated with this surface atom is 
omitted in the sum over V and instead of it the term due to the interstitial appears. In first-order approximation 

13 P. O. Lowdin, Suppl. J. Appl. Phys. 33, 251 (1962). 
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(AE(k))i is given by 

1 [fi2k2 fi2 r d*P 
(AE(k)),= — —<A*k ' |k>+c.c.+ E a k ( k ) — ( k + K ) 2 ( A ^ | k + K ) + / — -

<$k |#k)l2m K ^ 2m J (2TT)3 

X[<A#k ' |pM^(p,k; £0
/(k))+<p| A^M w o(k ,p ;£0 '* ) )+ E « K (k ) (A^ | pM„o(p, k+K;£ 0 ' (k ) ) ] 

+ E (5K,o+aK*(k))(SK-,o+«K'(k)) expC-*(K-K')T,](AF, '(k+K, k+K ' ; £(k)))4 . (VI.7) 
K,Kf J 

If multiple electron scattering is neglected, then (AH/)0 becomes independent of rj. The redistribution of the elec­
tronic energy levels due to the imperfections is determined by E/?(k). This is of importance in determining the 
optical properties of imperfections. The single-electron energy JS(k) given by Eq. (VL2) includes correlation among 
the valence electrons. E(k) is in general complex. The imaginary part of E(k) determines the lifetime of the elec­
tron state $k . 

The total energy of the system of valence or conduction electrons is given by 

£=E{£o , (k ) - |CCo+^^(k ,k ;Eo , (k ) ) ]}+ZA£ z , (VI.8) 
k I 

with 

1 [h2k2 h2 r d*p 1 r &P 
A £ * = Z <A*k*| k ) + c . c . + — / p2{A$>^\ p><p| A<S>k>+-

k <$k|3>k)l2m 2 W (2TT)3 2J (2TT)3 

L J (2TT)3 J 

dzp dzq 

(27r)3(27r)3* 

r r d6p d6q ~| 

J J (2TT)3 (2TT)3 J 
(VL9) 

The summation over k includes spin summation. Equation (VI.8) can be rewritten as 

£ = E 
k 

U'(k)-KCo+^U0(k,k;Eo'(k)))+£ |~|ar(k)|«(— (k+K)2+M~°(k+K, k+K;£o'(k))) 

+ E - :^(5K,o+aK*(k))(5K,,o+a^(k)) expp(K-KO-r,0]{(AF/°(k+K, k + K ' ; 0))' 
K' Oo 

+AF*fc(k+K, k+K';E(k))+J[ACi0(k+K, k+K')+A4„fc(k+K, k+K';E(k))]}lj+EF , (VI.10) 

where EF denotes the formation energy of imperfections. In first-order approximation AEi is given by Eq. (VI.9), 
putting all A$k*' due to interstitials equal to zero and using for A$k*' and A<3>k the expressions obtained for a 
perfect crystal. 

VII. VALENCE ELECTRON CHARGE DENSITY WITH APPLICATION TO DIAMOND 

The charge density of the valence electrons is given by 

' d*p dp0 

(2TT) 3 2TT 

Performing the integration over po one gets 

r f d*p dp0 
>(r) = 20 / / — - _ G ( p ^ 0 ) ^ ( r ) ^ p * ( r ) . (VII.l) 

J J (2TT)3 2TT 

P(r) = 2fi / " - 4 - / ^ » ( » ) * P * W - (VIL2) 
J (2x)3 
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If one expands p(r) in a Fourier series, one obtains 

P W = E P K exp(iK.r), (VH.3) 

with 

P K = - fd*rp(r) exp(-^K.r) . (VII.4) 
QJ 

Using Eq. (VIL2) and writing \f/p as 

^ W = C P I r K ( p ) expft(p+K).r], (VII.5) 
K 

with 

TK(P) = &,o+aK(p)+fe(p), (VII.6) 

where «x(p) is given by Eq. (111.41) and $K(P) is given by 

0 s ( p ) = - ~ £ V ( p ) [<&&.,>(*) exp[-*(P+R)-r ] , (VII.7) 

one gets 

F ; (2TT)3" 
P K - 2 0 E /"T-^/PICPIVK^CPJTK'+KCP). (VIL8) 

Using Eq. (VII.6) one obtains 

" dzp 

( 2 ^ 
p K = 2 Q / — - / p | C p | 2 { 5 K , 0 + a K ( p ) + a - K * ( p ) + ^ K ( p ) + ^ K * ( p ) + Z [ « K ' * ( p ) f e + K ( p ) + / ? K ' * ( p ) a K ' + K ( p ) 

J (2TT)3 * ' 

+^K'*(p)^K'-fK(p)+aK'*(p)aK'+K(p)]}. (VII.9) 

The normalization factor |CP |2 is expressed in terms of «K(P) by 

|cP|2=-(i+Z I«K(P)|2—El V(P)I ' )-1 . (vn.10) 
12 K^O 0 ttV' 

To perform the angular integrations in Eq. (VII.9) the quantities CK, «K, and 0K are expanded into spherical har­
monics. One gets then 

PK=2fl f dpp*fp{?>K,oNoo(p)+Z Nm(fi)Z(cL-K(p))m*+(-l)"(axW 
Jo 

K' «,»» 
g',m' 
e" 

+ 0S»(^))«»*C8K.+K(^))^+(ox^)) f.*(or+»(p))^..]} . (VII.U) 
with 

#„ . (*)= /" iO|Cp| 2 F^*(V^) , (VII.12) 

( a i W ) p - f<KkiK<J>)Y„*(8„<pv), (VII.13) 

(P*(p))m- id^K{V)Ym*{ep,<pp), (VII.14) 
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where always 6P and <pp refer to the same coordinate system, and 

<r{gfgtfg,m!{m-mf)m) = ( —r-) C(gfg"g,fnf(fn~fn')™)C(g'g"g,OQO). (VII.15) 
\ M2g+1) / 

The C's are usual Clebsch-Gordan coefficients.14 The remaining integration over p in Eq. (VH.11) has in general 
to be performed numerically. (aK(p))gm and (0K(p))gm are evaluated in more detail in Appendix B. 

To demonstrate the usefulness of the above results, some Fourier coefficients of the valence electron charge 
density in diamond are calculated. The scattering amplitude ti°(q,k;E(k)) is determined by Eq. (IV.9). 
(AflV(q,k;-E(k))) is approximated by the sum of A P 7 ( | q - k | ; 0)/€<°>(Iq—k| ;0) and AFBl(q,k;£(4)). e<°> de­
notes the free-electron gas dielectric constant.12 AVi1 and AVR1 are determined using earlier results obtained by 
Herman16 and Kleinman and Phillips.1 It is now *i°(K,E(Jfe))s hQ{K,E{k)) and /i°(k+K, knw ;E(k)) is approximated 
by the first terms in the expansion (Bl) with g=0 and g= 1. (AHi(k,K9nn>; E(k)))gm° is given by 

(Aff,'(*,K,ii„,; E(k)))gJ= (&Hif(k, \ knw- K | ; E(k)))9^Ygm*(ex9n„'-^^Ktnll^, (VIL16) 

with 

(AHi'(k9\knw-K\;E(k)))9^ ZdfiAffi;(k+K, knw;E(k))Pg(cosek,mi>-K). (VII.17) 

Pg are Legendre polynomials. (0K(k))m is approximated 
by the first term in the curly brackets of Eq. (B12). 
/k is approximated by 

/ k = l , for k<km a x 

=0, for k>km a x , 

with &max = 1.31 in atomic units. a_i is approximated in 
the formulas by 1. 

The obtained numerical results are given in Table I 

TABLE I. Fourier coefficients PK of valence electron charge 
density in diamond given in units of electrons per atom. Column 2 
presents the results of the calculations of the present paper. 
Column 3 presents the results obtained by Kleinman and Phillips 
(Ref. 3) and column 4 presents the experimental results obtained 
by Gottlicher and Wolfel (Ref. 16). 

(a/2x)K 

(111) 
(220) 
<311> 
<222> 
<400> 

PK 

0.91 
0.12 

-0 .10 
-0 .13 
-0 .11 

PK 

0.88 
0.01 

-0 .14 
-0 .15 
-0 .13 

PK 

0.98 
0.18 

-0 .04 
±0.15* 
-0 .14 

a Measured by Renninger [M. Renninger, Z. Krist. 97, 107 (1937); 
M. Renninger, Acta Cryst. 8, 606 (1955)]. 

and are compared with theoretical ones obtained by 
Kleinman and Phillips3 from a plane-wave calculation, 
and with experimental results obtained by Gottlicher 
and Wolfel16 from x-ray scattering due to diamond 
powder. Our results are generally in good agreement 

14 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

16 F. Herman, Phys. Rev. 93, 1214 (1954). 
16 S. Gottlicher and E. W6lfel? Z. Elektrochem. 63, 891 (1959). 

TABLE II . Fourier coefficients PK of valence electron charge 
density in diamond given in units of electrons per atom. Column 
2 presents the results following from the approximation / = 2 J I A U I . 
Column 3 gives the results obtained by using the approximation 
t^^ih. Column 4 gives the results following from the exact t-
matrix, see column 2 of Table I. 

(a/2ir)K 

<1H> 
(220) 
(311) 
(222) 
(400) 

PK 

0.78 
0.26 
0.07 
0 
0.02 

PK 

0.86 
0.27 
0.07 
0 
0.02 

PK 

0.91 
0.12 

-0 .10 
-0 .13 
-0 .11 

with the earlier ones listed in Table I. Note, however, 
that for P220 the various results disagree. 

To demonstrate the significance of the ^-matrix ap­
proach in Table II the Fourier coefficients resulting 
from the approximations t—^iAHi and t=Y<itb re~ 
spectively, are compared with the results obtained in 
Table I. The covalent bonding is demonstrated by 
the difference between the corresponding pk listed in 
columns 3 and 4. 

Vm. LIMITATIONS AND APPLICATIONS 

A general method is presented for a systematic deter­
mination of the effective valence or conduction electron 
wave function in static crystals of arbitrary structure. 
The tightly bound core electrons are treated as dynam­
ically independent of the valence electrons. The neglect 
of correlation between core and valence electrons is 
valid if electron transitions between tightly bound core-
electron states and valence-electron states are negligible 
and if the excitation energies of tightly bound core 
electrons are large compared to excitation energies of 
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the valence electrons, for example, the plasma energy. 
Under these two conditions the core-valence electron 
interactions are essentially unscreened and thus can be 
treated within the Hartree-Fock approximation. This 
is the case, for example, for small ion cores. Correlation 
among the valence electrons is taken into account. A 
major advantage of the ^-matrix approach is its ease of 
physical interpretation which is very useful in finding 
good approximations for the wave functions, self-
consistent crystal potential, and electron energies. Fur­
ther, with respect to previous work, the present treat­
ment of valence electrons offers the advantage that the 
determination of the wave function is not limited to 
symmetry points of the lattice. This, consequently, 
permits a more systematic determination of a self-
consistent valence electron density. The determination 
of the valence-electron response to the effective crystal 
potential includes nonlinear screening, e.g., local field 
corrections. Therefore, it is expected that this treat­
ment of the valence electrons will be useful particularly 
for describing the electronic structure of a variety of 
crystals, for example, covalent bonding. Actually, the 
performed determination of the valence-electron charge 
density in diamond yields covalent bonding. 

The scattering of the valence electrons by the crystal 
potential is treated by taking into account the atomic 
configuration of the lattice. Thus, the proposed method 
is adopted to imperfect crystals and can be used for 
determining the electronic structure, for example, of 
interstitials, vacancies, and color centers. The special 
electronic structure of a crystal is manifested by the 
interference of the scattered waves due to the lattice 
atoms. This aspect is of importance in studying the 
validity of various approximations applied to valence 
electrons, for example, orthogonalized plane wave 
method, tight-binding approximation, etc. 

The main assumption made in deriving explicit ex­
pressions for the t matrix and the valence-electron wave 
function, which are the basic quantities in the present 
treatment of valence electrons, requires that the per­
turbing Hamiltonian AH/ scatter the valence electrons 
mainly in the core region and that the AH/ do not 
overlap appreciably. Then, the multiple electron scat­
tering is essentially given by multiple forward and back­
ward scattering between lattice ions. In some crystals 
the above basic assumption may not be valid for those 
AH/ associated with next-neighbored lattice ions. Then, 
a more careful analysis of the corresponding multiple 
electron scattering need be performed. 

It will be interesting, in particular, with respect to 
imperfect crystals, to extend the present method by 
taking into account electron-phonon interaction.17 

The presented method will be used in a continuing 
paper to calculate the formation and migration energies 
of vacancies and interstitials in valence crystals. 

17 J. W. Wilkins, thesis, University of Illinois, 1963 (un­
published). 
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APPENDIX A. THE PERTURBING 
HAMILTONIAN Atf/ 

In this Appendix, it is shown how the perturbing 
Hamiltonian AH' given by Eq. (11.18) can be split into 

A # ' = E i A # / . (Al) 

First, the potential Vi can be written as 

F s ( r ) = E * * 7 ( r - r , ) , (A2) 

where VJ is the Coulomb potential due to the ion core I 
centered at r̂  in the lattice. Using for the eigenfunctions 
<pt,k the expression given by Eq. (II.6), then A& is 
given by 

Aiv(r}E(k))=Y,iAiV
l(r,E(k)), (A3) 

with 

^ ( r , £ ( k ) ) $ k ( r ) 

= (-) L tfi.k<(n) [dVVa'b-t', E(k))<p/(r-ti) 
\N/ «.* J 

X^CrOSkCrO, (A4) 

where Vs denotes the screened interaction between 
core and valence electrons. Thus, AF/(r,E(k)) can be 
written as 

AF/(r )£(k)) = E !(AF/(r,E(k))) ' , (A5) 

with 

( A W . E C k ) ) ) ' - JV(r)-0-Xk| Vf\ k) 

+;U<(r,£(k)-0-1<kM* ! |k>. (A6) 

Using again Eq. (II.6) one gets for A Fie 

AF B ( r ,£ (k) )=£ , AtV(r,£(k)) , (A7) 
with 

AFB ' (r J£(k))^FB
!(r>£(k))-fi-1{k|VB

l\b), (A8) 

where VR1 is defined as 

Fa '(r,E(k))*k(r) = ( - ) £ ff«,k.(r,)(E(k)-E,(k')) 

XbaMWlr-ti). (A9) 

AC and AA„ can in general be expanded as 

AC=AC<1)+(AC<2>-AC<1>)+--- (A10) 

and 
AA„=AAvvv+(AA„<-»-AAvvV)+- • •. (All) 
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AC<X> and A 4 „ « are determined using the wave func- APPENDIX B. DETERMINATION OF 
tion t̂ k resulting from approximating AH' by the sum («K(*))»» AND {fi^.{k))gm 
of.AV{ a n d A > - .AC(!} ^ ^ f a r e determined T o rform t h e ^ ^ ^ ^ m E q . (VII.13) <*K(k) 
u s i n g . t h e w a v e f u n ^ ^ i ^ ^ ^ a ^ r o x u i m t i D g n e e d b e ^ i n t e r m s rf , a n d I t M o w 8 f r o m 

AH' by the sum of AF/, AVR, AC(1), and A^UV
(1). The . *\ w l , , w t N , ^ / n r «N ,, , 

higher terms in the expansions (A10) and (All) are * P J ™ f i n g £(k) by £ *) and Eqs. (IV.3) that 
determined in this manner. This implies then, that AC tf(k+K,k;£(*)=/«K,£(*)).For</'(k+K,*ii,P; E(k)) 
and &A„ can be written as o n e 8 e t s 

AC=E«AC, (A12) i / ( k + K , k i , ; £ W ) = E . ( - J ) ' F w , ( O k , w ) 
and a,w» 

A i ^ E i A ^ 1 . (A13) 
xj 17 /A1N- t. * u r j T •*• X(tf(*,K,nK,;£(*)),*, (Bl) Hence, Eq. (Al) is shown to be valid. In summary, it is 

AHi'= (AViiy+AVR
l+ACi+AAvv

l. (A14) where (/i°(&,K,i^; E(k)))gm is approximately given by 

2m (AH{{k&nlv; £(*)))*.' 
W(*,K,n„,; £(*)))„.= , (B2) 

4TT& 2 2W 
1 + — — / d^Gof(p9Eof(k)(AH/(k}V;E(k)))0 

(2TT) 3# 

with 

(Affi(*,K,nw; E(4))),J>=4ir ( d*RYm(e*,<p*)jgQiR) exp(-*K. R)Aff ,'(R; £(i)) exp(iftmr • R). (B3) 

Using these results and Eqs. (111.41), (111.44), (111.34), one obtains 

( « K ( * ) U = (6,KM){47r^0
0(K,£(^))(G0

,(^,^; Eo'(k)))gdm,o+Hgm(kyK)+ • • • } . (B4) 

(Go')*/ is given by 

(Go'(*,£; £„'(*))),= /"dDGo'd k + K | , Eo,(^))Fa0*(^,K,0). (B5) 

Hsm(k,K) is given by 

Hgm(k,K) = £ L «ioi'(*)A*«r(*)K,nibi')(-0'l+ar^iMr,,<i/« 
J' *,*,r 

(/V/o) /t,",/,5 

eikrw 
X{d/,rdSl()h

0(knlolt, -knhi,; E(k))(tk°(k, K=0, knlol,; £(A)))JwoL.r 

+4T E f*{ryf,m)iyGrwW{k, K=0, -knhl,; £(&)))M,F78*(0K,„Io!<,«>K,nV<)>, (B6) 

with 

exp(i£r!o!<)| 

and 

exp(^r!o!-)r /exp(i^ !o(0\2 T"1 

« w ( ^ « - i - i-hfi(knhV, -knw,E(k))tl0'(-knki.,knki,;E(k))(~ — ) (a^Y , (B7) 

A,fr(ft,K>nilr)« (V(*,K,*nw.; E(k)))stGo'(k,K,E0'(k))r, (B8) 

/ ( 25+ l ) (2 /+ l ) \ 1 « 
a(sfy, tS(t+S))=[ — - ) C(sfV,tS(t+d))C(sfy,000). (B10) 

\ 4TT(2IJ+1) / 
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j y is the 7th spherical Bessel function. The quantity Hgm(k,K) represents local-field corrections to the valence 
electron-charge density and reflects the crystal structure. It describes, for example, in covalent crystals the 
hybridization. 

It follows from Eqs. (VII. 7) and (II.6) and writing 

Pt\l(Ri) 
^ ( R * ) = E F«x(fe„*Ri) CBH) 

x Rt 

that (fix(k))gm is given by 

SK 
C 8 K ( * ) ) ^ = E {Itm,9(kyK)h(k)+j: E ( ~ l ) x V ( / g ^ -XW(m'-\))cr(^,X(m--A)w) 

YJ)*-v^{pvxfiv^ (B12) 

The function Itmftg(k9K) is defined as 

/ ^ a ( ^ ) ^ ( - i ) ^ ( 4 7 r ) 2 ( ) *tog,fnQm) dRRPtmHR)j,(KR)jg(kR). (B13) 
\4wN / Jo 

b\(k) is given by 

fcCJJs [d*r<pttJ*(tW(r). (B14) 

The function Pm'-x',m-x1,(aK',K,/5K',K,0) results from using the formula 

n » ( M = E DwrnrKoLfiMYnW,*/), (B15) 

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate 
system, a is the azimuthal angle and £ the polar angle of the new polar axis, to which 0' refers, with respect to the 
original axis. The matrix Dmmrl is given by14 

ZW'feftO) = e-^'"<W(/3), (B16) 

with 

/ ( - l)5[cos (/3/2)]2H^-m'-2«[- sin (ft/2)>'-™+2*\ 
dentin) = W+m) \{l-m) [(/+niO!(/-»') !)1/2( E — ) , (B17) 

V« {l—mf—q)\(l+m— q)\(q+mf—m)\q\ / 

where the sum is over the values of the integer q for which the factorial arguments are greater or equal to zero. 
In first-order approximation (fe(£))flm is given by the first term in the curly brackets of Eq. (B12). The cor­

rections are typically of the order of 10%. 

APPENDIX C. DETERMINATION OF THE Ft(r8,ri) and Mt(rS9ti) are defined by 
EXPANSION COEFFICIENT Ut,*(u) 

W r i t i n g F<(tnrdm(tf\IP\tf) (C3) 

fl=fl°+Ei(M0i, (CD and 

where H° denotes that part of the Hamiltonian H Mt(ts,ri) = --Y,i'(<Pt8\(dH)i>\<ptl). (C4) 
which is associated with the perfect crystal, it follows 
from Eqs. (IL5) and (II.6) for J7,fk(ri) the set of Defining then Ut^fa) by 

equations1* E i ^ ( V i ) ^ . k 0 ( r O - a ( k ) ^ , k o ( r t ) = 0 (C5) 

= E * M«(r.,ri)l7,ik(ri). (C2) a n d a G r e e n s Act ion G(r^,E*(k)) by 

" G. F. Koster, Phys. Rev. 95, 1436 (1954). E K ^ < ( ^ r 0 - ^ ( k ) 5 r „ r J G ( r z , r r , E « ( k ) ) =5 r . .r , ' , (C6) 
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one obtains 

Uttk(h) = ^«.k°(ry)+Li TiMGfatiMV), (C7) 

where the Tttk(u) are determined by the set of linear 
inhomogeneous equations 

Ei'{*r1.rl'-2:i.Af«(^,r«)G!(rj>ry>JBi(k))} 

XTt,k(tti=i:tMt(r,,ilWttk
0(Td. (C8) 

For a vacancy Z7tffc(r7)=0. It follows that in the case of 
a perfect crystal the Uttk°(ti) are given by exp(ik«r*). 

Assuming that the (&9)j.are well localized, then the 
matrix elements Mt{tSixi) can be approximated by 

T I O N IN C R Y S T A L S A1061 

Mt(rs,t8)8t9tH. Then, in first-order approximation, which 
neglects coupling between different Tttk(ti), one gets 

Jf,(r.,r.)l7lfk«(r.) 
re,k(r8)= (C9) 

l-lfi(r.,r t)G(r t,r.,Ei(k)) 

G(r„rj,E«(k)) can be determined similarly as Ut,k(*i) 
using the Green's function 

G°(r8,r*,£,(k)) 

=EpexpPp.(f^rO]Go(p,^(k)) , (CIO) 

to which the Green's function G(rs,rz,£*(k)) reduces in 
the case of a perfect crystal. 


